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We study the quantum version of the random K-satisfiability problem in the presence of an external magnetic
field � applied in the transverse direction. We derive the replica-symmetric free-energy functional within the
static approximation and the saddle-point equation for the order parameter: the distribution P�h�m�� of func-
tions of magnetizations. The order parameter is interpreted as the histogram of probability distributions of
individual magnetizations. In the limit of zero temperature and small transverse fields, to leading order in �

magnetizations m�0 become relevant in addition to purely classical values of m� �1. Self-consistency
equations for the order parameter are solved numerically using a quasi–Monte Carlo method for K=3. It is
shown that for an arbitrarily small � quantum fluctuations destroy the phase transition present in the classical
limit �=0, replacing it with a smooth crossover transition. The implications of this result with respect to the
expected performance of quantum optimization algorithms via adiabatic evolution are discussed. The replica-
symmetric solution of the classical random K-satisfiability problem is briefly reexamined. It is shown that the
phase transition at T=0 predicted by the replica-symmetric theory is of continuous type with atypical critical
exponents.
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I. INTRODUCTION

The quantum phase transition �QPT� is a transition be-
tween different ground states driven by quantum fluctuations
and controlled by certain parameters—for example, an exter-
nal magnetic field. Study of QPTs in systems with strongly
interacting spins attracted attention in the field of quantum
computing due to the possibility of creating massively en-
tangled states at the quantum critical point �1� and the rel-
evance of QPTs to the analysis of the performance of quan-
tum algorithms for solving classical combinatorial
optimization problems �COPs� �2–6�. Quantum mechanics
offers an alternative to the mechanism of thermal fluctuations
for the transitions between states, which can be exploited in
optimization procedures �2,7�. The QPT in this paper will be
studied in the context of a general-purpose quantum adia-
batic algorithm �QAA� proposed by Farhi and co-workers
�8�. In its simplest form the algorithm is defined via a quan-
tum N-spin Hamiltonian that is a sum of two terms:

Ĥ = Hcl��̂i
z, . . . ,�̂N

z � − ��
i=1

N

�̂i
x. �1�

The first operator term is derived from a cost �energy� func-
tion of classical spins Hcl�s1 , . . . ,sN� by replacing each clas-
sical spin si= �1 with a Pauli matrix, �̂i

z. The ground state of
this operator encodes the solution of a classical COP de-
scribed by Hcl. The second term describes spin coupling to
the external magnetic field �� applied in the transverse di-
rection �e.g., along the positive x-axis�. At the start of the

algorithm, � is made very large and the ground state of Ĥ�0�
is prepared with all spins pointing in the x̂ direction. Then

�=��t� is slowly reduced to zero, while the state of the
quantum system remains close to the instantaneous adiabatic
ground state of Ĥ�t�—provided that the condition
��0� �

�t Ĥ��0	� �E1−E0�2 is satisfied. Here Ĥ�t���n�t�	
=En�t���n�t�	. At the end of the algorithm at �=0, the sys-
tem is found in a state which is a superposition of spin con-
figurations corresponding to all degenerate global minima of
Hcl. The run time of the algorithm is proportional to 1 /gmin

2 ,
where gmin=min��E1−E0� is a minimum of the energy gap
�9� taken over the range of �.

It was noticed several decades ago that the properties of
the solution space of complex COPs are closely related to
those of spin-glass systems �10,11� It was also recognized
�12� that many of the spin-glass models are in almost one-
to-one correspondence with computationally hard COPs en-
countered in practice and forming a class of NP-hard �13�
problems.

Whereas theoretical computer science is mostly con-
cerned with the worst-case complexity, from the statistical
physics perspective the main interest lies in the typical run-
ning time of algorithms over the random ensemble of prob-
lem instances �or samples of spin-glass systems� �11,14�.
When this expected run time scales exponentially with the
number of spins, the COP is considered intractable. This in-
tractability was linked to so-called threshold phenomena
�15–18� in NP-complete problems. In the physics commu-
nity, these threshold phenomena were recognized as phase
transitions in models of classical spin glasses �19�. Many
NP-complete problems, including the most basic of them—
random K-satisfiability �or K-SAT�—correspond to infinite-
range dilute spin-glass models with K-local interactions �i.e.,
H�s1 , . . . ,sN� is given by a sum of interaction terms, each
involving a set of K spins chosen at random from a set of
size N�. In this paper we study the quantum version of
K-SAT. Quantum effects enter via the transverse field � �for
a different model of K-SAT with “quantum clauses” see Ref.
�20��.
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In contrast to finite-dimensional models, the topology of
links corresponding to spin couplings in K-SAT is com-
pletely random, with no nontrivial correlations. The random
ensembles of instances are described by a single parameter,
the connectivity �, which is the number of interaction terms
per spin, �=M /N. The probability for a given spin to be
involved in d interactions is Poissonian with the finite mean
value of d equal to K�. This is different from infinite-range
fully connected spin models such as the Sherrigton-
Kirkpatrick model �21�, where the value of d=N−1 scales
with the number of spins.

Classical infinite-range spin-glass models in the dilute
limit have been studied, though recent results concentrate on
the zero-temperature limit �22–28�. However, very little is
known about their respective quantum versions �described by
the Hamiltonian �1� with Hcl corresponding to an infinite-
range dilute spin glass� despite a lot of interest in these mod-
els from the perspective of quantum computing. Recently,
quantum versions of random exact cover and other related
optimization problems have been studied �29� using a gener-
alized annealing approximation �30�. At the same time, fully
connected infinite-range quantum spin models have been
analyzed in the literature using various approximations. This
includes quantum versions of the Sherrington-Kirkpatrick
�SK� �31–35�, random Heisenberg �36�, p-spin and random
energy models �37�. Exact solutions in quantum spin glasses
are mainly limited to one-dimensional models �38,39�.

Numerical studies �16� have demonstrated that the typical
run time of known classical algorithms applied to ensembles
of randomly generated instances of K-SAT and similar mod-
els, as a function of �, peaks at the point of static transition,
which is a major bottleneck of classical optimization algo-
rithms �see Fig. 1�. This can be understood by analogy with
the critical slowing down of the dynamics in the vicinity of

phase transitions in problems without disorder. Similarly, we
expect that the dynamics of the QAA for random K-SAT
could be governed by the corresponding QPT. If the system
underwent a QPT as the value of � is lowered from a large
value to 0, the gap would attain its minimum value at the
point of the transition. The critical exponent associated with
the singularity of the free energy would determine the scal-
ing of the minimum gap �which would have the form of an
exponential or stretched exponential �39��.

In this paper we concentrate on the static transition that
corresponds to the satisfiability transition at zero tempera-
ture. We concentrate on K=3 as the most interesting case. It
is the smallest value of K for which K-SAT is NP-complete.
Moreover, random K-SAT undergoes a random first-order
phase transition for K	3. As is the case with all random
first-order transitions, the static transition is preceded by the
dynamic transition. Results for similar model—K-XOR-SAT
or dilute p-spin glass—at finite temperature indicate �40� that
the free energy remains analytic across the dynamic transi-
tion, which would imply that the static transition is the real
bottleneck of the simulated annealing algorithm. While giv-
ing credence to the idea of the analysis of the static transi-
tion, this picture may not necessarily apply to K-SAT for K
=3, where the dynamic transition is accompanied by another,
condensation, transition �27,28�. Due to difficulties of
replica-symmetry-breaking analysis in the quantum case, we
have only performed a replica-symmetric analysis. Although
the replica-symmetric approximation is capable of correctly
capturing the existence and qualitative properties of the static
transition, it fails to describe the dynamic transition and
overestimates the critical threshold �c.

In Fig. 1 we sketch two conjectured forms of the QPT line
�=�c���. One possiblity is that �c��� changes continuously
from the value of 0 at �=�c. Alternatively, it may exhibit a
finite jump �i.e., �c��c�=�c0
0� as in dilute transverse Ising
models without frustration �41,42�. Another �third� possibil-
ity is that the phase transition at �=0 disappears for any
finite �
0. One may distinguish between these cases by
setting ��1 and studying the free energy for a range of
values of � containing �c, as shown in Fig. 1. In the QAA the
parameter ��t� decreases with time, corresponding to a ver-
tical line in the �� ,�� plane as shown in Fig. 1. The central
result of this paper is that it is the third possibility that takes
place: quantum effects �the transverse field �� in the QAA
Hamiltonian �1� make the static phase transition disappear;
the free energy becomes analytical in the vicinity of �c for
small but finite �.

It should be mentioned in passing that certain highly sym-
metric examples of COPs have been constructed �43,44�,
where the total spin is an exact quantum number of the
Hamiltonian Ĥ of Eq. �1� and the QAA fails due to the onset
of a large spin tunneling through a broad, order N, semiclas-
sical barrier with amplitude that scales down exponentially
with N �44,45�. However, in spin glasses, quantum evolution
does not correspond to large spin dynamics. Instead, an ex-
ponentially large �in N� number of deep local minima of the
classical energy are connected by an extremely large number
of tunneling paths with amplitudes proportional to high pow-
ers of �. This picture as well as the analysis of QPTs is more
relevant for understanding the typical complexity of the
QAA for NP-hard problems such as K-SAT.
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FIG. 1. Thick black �1� and gray �2� lines show two possible
forms of quantum phase diagrams on the transverse field � vs con-
nectivity � plane for the random K-SAT problem. Black line �1�
corresponds to the quantum dilute ferromagnet. The gray solid rect-
angle shows the region of interest in this paper with small trans-
verse fields, �� 1. The dot-dashed line depicts the scaled exponent
�=���� of the median run time T of a classical algorithm,
T
exp��N�, over an ensemble of problem instances with the
same �.
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This paper is organized as follows. Section II presents a
brief overview of important results for the classical version
of random K-SAT and discusses the relationship between the
present work’s replica-symmetric analysis of quantum
K-SAT and that of the classical K-SAT corresponding to the
limit of �=0. We formulate the quantum version of K-SAT
and analyze it using replica-symmetric theory in Sec. III.
This is followed by an analysis of small magnetic fields � in
Sec. IV. In Sec. V we reexamine the classical T=0 random
K-SAT to demonstrate that the replica-symmetric analysis
predicts a continuous phase transition; it was previously
thought to be of random first-order type. In Sec. VI we
present the numerical results for both finite-temperature clas-
sical K-SAT and zero-temperature quantum K-SAT. We con-
centrate on K=3, which is the most interesting case. Since
we utilize the replica-symmetric approximation in the analy-
sis of quantum K-SAT, we compare these results with those
predicted by the replica-symmetric theory for finite-
temperature classical K-SAT �despite the fact that the tools to
study replica symmetry breaking in classical K-SAT have
appeared recently�. In the Conclusion we discuss our results,
especially in relation to the QAA and describe possible ex-
tensions of the present work. A novel quasi–Monte Carlo
algorithm used in numerical calculations is described in the
Appendix.

II. CLASSICAL STATISTICAL MECHANICS OF RANDOM
K-SAT: MONASSON-ZECCHINA REPLICA-

SYMMETRIC SOLUTION AND ITS CONNECTION
TO THE PRESENT WORK

An instance of random K-SAT is a system of N classical
spins with the energy function that is written as a sum of M
terms:

Hcl�s1, . . . ,sN� = �
e=�i1,. . .,iK��E

E�si1
, . . . ,siK

;Je� . �2�

Each term is associated with a K-tuple e= �i1 , . . . , iK�. If spins
labeled by i=1, . . . ,N are viewed as vertices of some graph,
K-tuples e correspond to its hyperedges. The set of all hy-
peredges for a given instance is denoted E. Hyperedges cor-
responding to each term are chosen independently and uni-
formly at random; hence, with each instance of random
K-SAT we may associate the realization of a random hyper-
graph. This represent the geometric part of disorder.

Each term defines a constraint involving spin variables
si1

, . . . ,siK
. The cost function E�s1 , . . . ,sK� can be either zero

or some positive value representing the energy penalty for
those combinations �s1 , . . . ,sK� that violate the constraint.

For K-SAT the constraints penalize exactly one out 2K

assignments. The cost function is chosen in the following
form:

EJ�s1, . . . ,sK� = 2�
�=1

K
1 + J�s�

2
. �3�

Here J= �J1 , . . . ,JK�, where J�= �1, denotes the combina-
tion of K spin values that is assigned an energy penalty of 2.1

The argument J of the cost function will be written as a
subscript unless it refers to a specific hyperedge as in Eq. �2�.
The values of the disorder variables Je are chosen indepen-
dently and uniformly at random for each constraint. The cor-
responding probability distribution assigns the probability of
1 /2K to each realization of J:

p�J� = �
�=1

K
�J� − 1� + �J� + 1�

2
. �4�

The energy �2� equals twice the number of violated con-
straints. When the number of constraints, M, is sufficiently
small, all of them may be satisfied at the same time and the
energy is zero. The properties of random K-SAT are studied
in the limit when the number of variables, N, and constraints,
M, goes to infinity, while the constraint-to-variable ratio �
=M /N is kept constant. In this limit the fraction of variables
involved in d constraints is Poissonian with mean K�,

fd�K�� =
1

d!
�K��de−K�, �5�

so that each variable appears in K� constraints on average.
It has been shown by computer studies that there exists a

threshold �c such that with overwhelming probability, there
exists a configuration of N spins with zero energy if and only
if ���c �in the limit of large N�. In the language of statisti-
cal mechanics, the random K-SAT undergoes a phase transi-
tion between the satisfiable �SAT� and unsatisfiable �UN-
SAT� phases at �=�c. The interaction term �3� imposes a
“weak” constraint on the spins involved in it. For this reason,
unlike the Viana-Bray model with Ising interactions, the
phase transition for random K-SAT does not coincide with
the percolation transition for the corresponding hypergraph.
For 3-SAT, the percolation transition takes place at �perc
=1 /6, while the “experimental” value of the satisfiability
threshold is �c�4.2 �16�. The exact value of �c for random
K-SAT for K	3 is not known.

Random K-SAT can be formulated as a statistical mechan-
ics problem by introducing the artificial temperature T
=1 /� and writing the Gibbs free energy

F = −
1

N�
ln �

�si���1N

e−�Hcl��si�. �6�

The extra factor of 1 /N ensures that this is the free energy
per spin so that F does not scale with N. It is related to the
total internal energy � and the total entropy � via the stan-
dard identity:

1This value of the energy of a violated constraint is an arbitrary
quantity; it is often chosen to be equal to 2 only to simplify calcu-
lations �24,25�.
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F =
1

N
�� − T�� . �7�

In the limit T=0 thermal fluctuations disappear and the sec-
ond term in Eq. �7� vanishes. In this limit � converges to the
minimum value of energy Hcl. Therefore, F=0 for ���c.
Note that in random K-SAT there is no region where the
minimum number of violated constraints is o�N� except in
the immediate vicinity of �c. For �
�c this number is O�N�
and F
0.

Instance-to-instance fluctuations of F are small: o�1�.
Therefore, with overwhelming probability a randomly cho-
sen instance has free energy within o�1� from �F	, which is
the disorder-averaged value. This is the central quantity
which is computed using the replica method. We briefly dis-
cuss the main results obtained in �22,23�. The authors dem-
onstrated that the disorder-averaged free energy of random
K-SAT corresponds to the extremal value of the free-energy
functional

F�P�h�� = ��
−�

�

dh1 ¯ �
−�

�

dhKP�h1� ¯ P�hK�

��UJ�h1, . . . ,hK�	J

− �
−�

�

dh�h��
−�

� d�

2�
ei�hP̃����1 − P̃���� . �8�

Here �¯	J denotes averaging over the parameters J�= �1
��=1, . . . ,K� with equal weights assigned to all 2K possibili-
ties. The function UJ��h�� is defined as

UJ�h1, . . . ,hK� = 2 min„1,�J1h1�+, . . . ,�JKhK�+… . �9�

Here and throughout the paper we use a shorthand �¯�+,
which we define as follows:

�x�+ = �x for x 
 0,

0 for x � 0.
� �10�

The function P̃��� in �8� is the Fourier transform of the
distribution P�h�:

P̃��� = �
−�

�

dhe−i�hP�h� . �11�

The function P*�h� is found by extremizing F�P�h��
subject to the constraint �−�

+�dh P*�h�=1. Distribution P*�h�
has the meaning of the histogram of effective fields hi asso-
ciated with each spin. Whenever hi�0 spin si takes the same
value si=sgn hi in all spin configurations with the lowest
energy. The absolute value �hi� is one-half of the energy cost
needed to flip it.

The fraction of frozen �such that hi�0� spins q
=�−�

−0 dh P*�h�+�+0
+�dh P*�h� is the order parameter associ-

ated with the satisfiability transition. In the satisfiable phase
q=0, corresponding to P*�h�=�h�, whereas the unsatisfi-
able phase is described by finite q
0.

The simplest solution P*�h� of the extremality condition
for the functional �8� is �22�

P�h� = �
k=−�

+�

e−K��q/2�K−1
I�k�„K��q/2�K−1

…�h − k� , �12�

where Ik�x� is the modified Bessel function of first kind. The
value of q may be determined self-consistently from

1 − q = e−K��q/2�K−1
I0„K��q/2�K−1

… . �12a�

For K=3 and �
�d�4.667, Eq. �12a� has two stable solu-
tions: the trivial q=0 and the nontrivial q
0. The nontrivial
solution does not becomes stable until �
�c�5.181. The
corresponding bound is very close to the annealed bound of
�ann= ln 2 / ln�7 /8��5.191 and greatly overestimates the “ex-
perimental” value of the satisfiability threshold, �expt�4.2,
from computer simulations �16�.

A similar integer--peak solution �46� for the order pa-
rameter in the Viana-Bray model �47� was shown to be un-
stable in the longitudinal sector �i.e., within the replica-
symmetric ansatz� �48�. The longitudinally stable solution
exhibited a continuous part in addition to  peaks. Though
the appearance of the continuous component is believed to
signal the breakdown of replica symmetry, the replica-
symmetric result may still be useful if regarded as a type of
variational approximation.

The incorporation of the continuous component led to an
improved upper bound of the satisfiability transition �c
�4.60 obtained numerically �23�. This problem will be re-
examined in Sec. V, and we will show that although the
value of �c had been determined correctly, the phase transi-
tion predicted by the replica-symmetric theory is actually
continuous rather than first order as was claimed in Ref. �23�.

Subsequent analysis by Mézard and Zecchina of one-step
replica symmetry breaking �RSB� in random K-SAT im-
proved the bound for the satisfiability threshold to �c
�4.267 �24,25�. It is believed that this one-step RSB solu-
tion is stable. What made the T=0 RSB analysis tractable
�and yet required a lot of numerical effort� was the
integer--peak ansatz for the distribution of effective fields
within each pure state. It is a daunting task to extend one-
step RSB analysis to finite temperatures �where noninteger
effective fields are certain to exist�, let alone including quan-
tum effects. This paper only considers the replica-symmetric
solution.

Using replica-symmetric analysis to study the quantum
problem may have some merit. It has been argued in the
literature �49�, based in part on results on the quantum SK
model �32,50�, that effects of quantum tunneling may stabi-
lize the replica-symmetric solution. Even if true, such sym-
metry must break down for extremely small transverse fields
�=o�N� /N or in the limit � /T�1. Indeed, the purely clas-
sical limit �=0 should be described by the one-step RSB
solution obtained in Ref. �25�.

III. REPLICA SOLUTION OF QUANTUM K-SAT

A. Replica-symmetric free-energy functional

The quantum Hamiltonian given by Eq. �1� is a sum of
two terms: the purely classical term describing the interac-
tion of Ising spins and the quantum term describing the cou-
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pling to the external magnetic field applied in the transverse
direction. By employing a Suzuki-Trotter transformation, the

problem of finding the partition function Z=Tr e−�Ĥ can be
reformulated as that of computing the partition function of
the purely classical model. The corresponding classical par-
tition function is written as a sum over all possible paths
si�t�:

Z��J� = �
��si�t��

exp�− �
0

�

dtHcl„�si�t�… + �
i

K�si�t��� ,

�13�

where the functional K�s�t�� is given by

K�s�t�� = −
1

2
ln�tanh ��t� �

t=0,�t,. . .,�−�t

s�t�s�t + �t�

+
1

2
ln�1

2
sinh 2��t� . �13a�

The time variable t takes L discrete values t=k�t ��t
=� /L�. Periodic boundary conditions si���=si�0� are as-
sumed.

The sum �13� is over N�L spin variables labeled by i
=1, . . . ,N and t�k�t. In anticipation of the limit L→� that
will be taken eventually, we treat time as a continuous vari-
able. In particular, we write �0

�dt¯ to mean �k=0
L−1�t¯. We

use square brackets for writing functionals and for indicating
sets labeled by continuous variables. Sets indexed by a dis-
crete variable will be designated using curly braces. To avoid
ambiguities we may adorn brackets or braces with subscripts
and superscripts to indicate index variables and ranges ( e.g.,
��si�t�i�t=0

� ).
A constant in expression �13a� ensures proper normaliza-

tion of the statistical sum �13�. It can be verified that �13�
reduces to Z�0�= �2 cosh ���N for the noninteracting problem
�Hcl�0�.

We choose to write the classical Hamiltonian �2� in the
following form:

Hcl = �
i1�i2�. . .�iK

ci1,. . .,iK
E�si1

, . . . ,siK
;Ji1,. . .,iK

� , �14�

where the cost function EJ�s1 , . . . ,sK� for K-SAT is given by
Eq. �3�. Disorder variables Ji1,. . .,iK

are assumed to be uni-
formly distributed according to Eq. �4�.

The value of ci1,. . .,iK
is chosen to be 1 if the instance

contains a constraint involving a set of variables i1 , . . . , iK
and zero otherwise. Random variables ci1,. . .,iK

are statistically
independent and distributed according to

p�c� = �1 −
K!�

NK−1��c� +
K!�

NK−1�c − 1� . �15�

In the asymptotic limit �N→�� the number of constraints
will be M =�N. The form �14� is preferable to �2� because it
emphasizes the mean-field character of random K-SAT.

In this paper we will keep the derivation as general as
possible. Formulas written without expanding �3� will
be—by substituting appropriate expressions for
EJ�s1 , . . . ,sK� and p�J�—directly generalizable to any ran-

dom combinatorial optimization problem with binary vari-
ables and K-local interaction �e.g., K-XOR-SAT,
K-NAE-SAT, 1-in-K SAT�.

The central physical quantity of interest is the disorder-
averaged value of the free energy �F	=− 1

N� �ln Z	. This is the
same as the value of the free energy for a typical realization
of disorder, the free energy �in contrast to Z� being a self-
averaging quantity. We use the replica method to perform the
disorder averaging. The average of the logarithm is rewritten
using the following identity:

�ln Z	 = lim
n→0

�

�n
�Zn	 . �16�

For integer n, Zn is the partition function of a system of n
noninteracting replicas of the original random instance.
Computing �F	 will require performing the analytical con-
tinuation in n. The gist of the method is that disorder aver-
aging in the expression for �Zn	 is done prior to performing
the sum over classical spin configurations.

�Zn	 = �
��si

a�t��

exp��
a,i

K�si
a�t���

��exp�− �
a
�

0

�

dtHcl„�si
a�t�…�� , �17�

where the replica index a runs from 1 to n, effectively in-
creasing the number of spin variables to N�L�n.

Disorder averaging couples together formerly noninteract-
ing replicas. However, it also transforms the dilute model
with strong O�1� interactions into a completely connected
model with weak O�1 /NK−1� interactions. This permits the
exact evaluation of the sum over the spin variables using
mean-field theory. We express the mean-field solution in
terms of a set of order parameters: spin correlation functions

Qa1,. . .,ap
�t1, . . . ,tp� =

1

N
�

i

si
a1�t1�si

a2�t2� ¯ si
ap�tp� . �18�

In the thermodynamic limit, the partition function �17� can
be written in the form of a functional integral:

�Zn	 =� DQ D� e−Nn�F��Q,���. �19�

The argument of the exponential is �up to a factor� the free-
energy functional F that depends on correlation functions
�Qa1,. . .,ap

�t1 , . . . , tp� as well as Lagrange multipliers
��a1,. . .,ap

�t1 , . . . , tp� that enforce constraints �18�. In Eq. �19�
we have suppressed indices and time arguments for concise-
ness; similarly, DQ and D� are a shorthand for multiple
functional integrals.

In the limit N→� the integral �19� is dominated by the
saddle-point value of F:

F = −
1

Nn�
ln�Zn	 = F��Q*,��*� . �20�

The right-hand side is evaluated for �Q
a
*�t� and ��

a
*�t�,

which make F stationary with respect to small variations.
Note that in the following we will use a calligraphic F to
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indicate a functional and an italic F to denote its value at the
saddle point.

In practice, working with an infinite set of time-dependent
correlation functions is infeasible. Instead, as often done in
the analysis of quantum spin glasses �32,36�, we resort to the
static approximation. We solve stationarity condition for the
reduced set of functions—those that are independent of time
arguments. Note that consistency requires that if
Qa1,. . .,ap

�t1 , . . . , tp� are replaced by their static counterparts
Qa1,. . .,ap

, any time dependence be ignored for
�a1,. . .,ap

�t1 , . . . , tp� as well. Implemented in this form, the
static approximation may be regarded as a type of variational
approximation.

Integrating out ��a1,. . .,ap
, we may write F��Q� as a func-

tion of �Qa1,. . .,ap
 alone. It may be verified that static Qa1,. . .,ap

are the time-averaged dynamic correlation functions:

Qa1,. . .,ap
=

1

�p � dt1 ¯ dtpQa1,. . .,ap
�t1, . . . ,tp� . �21�

We work within the replica-symmetric ansatz, which posits
that Qa1,. . .,ap

at the saddle point of F are symmetric with
respect to permutations of replicas. Due to this symmetry,
not all Qa1,. . .,ap

are independent. The value of Qa1,. . .,ap
may

only depend on the set of numbers k1 ,k2 , . . ., which, respec-
tively, indicate the number of distinct replica indices that
appear exactly once, twice, etc. We will write

Qa1,a2,. . .,ak1
,b1,b1,b2,b2,. . .,bk2

,bk2
,. . . = Qk1,k2,. . . , �22�

where �ai , �bi , . . . are all distinct. Although for finite integer
n the inequality �rkr�n must hold, performing the analytical
continuation to n→0 requires knowledge of �Zn	 for all in-
teger values of n. Thus, paradoxically, in the limit n→0, the
values kr may run from 1 to �.

Note that in the classical limit �=0, only two paths
�s�t�� +1 and s�t��−1� contribute to �17�. Due to that, the
static approximation becomes exact in this limit, and the or-
der parameters Q�kr

may depend only on p=�rk2r+1 as evi-
denced from Eq. �18�. It has been recognized in the analysis
of the classical Viana-Bray model by Kanter and Sompolin-
sky �46� that the order parameters Qp are the moments of the
probability distribution P�m� of average spin magnetizations.
For a quantum model, Q�kr

are related to the functional dis-
tribution P�h�m��, where functions h�m� are defined on the
interval �−1;1�:

Q�kr
=� �dh�m��P�h�m���

r=1

� ��dm e−�h�m�mr

�dm e−�h�m� �kr

. �23�

That the right-hand side of �23� is a functional integral is
indicated by the use of square brackets ���dh�m��¯ �. Such
notation is customary in quantum field theory �see, e.g., �51��
and is consistent with our practice of using square brackets
to indicate sets indexed by continuous variables. Regular
multidimensional integrals will be written using curly braces
�e.g., ��dmii=1

k
¯�. Note that integrals over magnetizations

run from −1 to +1.
We refer to the functions h�m� as effective fields. It can be

guessed from the form of �23� that these effective fields rep-
resent probability distributions of individual spin magnetiza-
tions via pi�m��e−�h�m�. The distribution P�h�m�� is the his-
togram of effective fields hi�m� associated with each spin. It
may be interpreted as a probability distribution of probability
distributions of magnetizations. Such constructs appear in
replica analysis of classical problems in the description of
RSB. As one can see, in the quantum case they are already
present at the replica-symmetric level. Note that the effective
fields h�m� are defined only up to a shift by an arbitrary
constant h�m�→h�m�+const.

We express F��Q�kr
� in terms of the distribution P�h�m��

as a sum of two terms, which we will call a “quasipotential”
V and a “quasientropy” S, themselves dependent on
P�h�m��:

F�P�h�m��� = �V�P�h�m��� − S�P�h�m��� . �24�

We have used double square brackets to indicate that argu-
ments of F, V, and S are functionals. We refer the reader to
supplementary materials �52� for mathematical details of rep-
lica calculations; here, we only provide the resulting expres-
sions. For the quasipotential V�P�h�m��� we obtain

V =� ��dh��m��=1
K ��

�=1

K

P�h��m���UJ��h��m��	J, �25�

where �¯	J indicates averaging over 2K possible realizations
of the vector J. The functional integral over h1�m� , . . . ,hK�m�
describes averaging over probability distributions P�h��m��
of the quasipotential density UJ�h1�m� , . . . ,hK�m�� given by
the following expression:

UJ��h��m�� =
1

�
�
�=1

K

ln � dm e−�h��m� −
1

�
ln � �dm��=1

K

�exp�− �ÊJ�m1, . . . ,mK� − ��
�=1

K

h��m��� .

�26�

Integrals over magnetizations run from −1 to +1. We write
��dm��=1

K
¯ to indicate the K-dimensional integral over

magnetizations m1 , . . . ,mK.

The function ÊJ�m1 , . . . ,mK� that appears in Eq. �26� is
multilinear in m1 , . . . ,mK and coincides with EJ�¯� when
�m�� ��1K. These two conditions determine it uniquely.
For K-SAT the expression is obtained by formally replacing
the discrete spin variables in Eq. �3� with continuous mag-
netizations �m�:

ÊJ�m1, . . . ,mK� = 2
1 + J1m1

2
¯

1 + JKmK

2
. �27�

It is easily seen that for any � one may write

ÊJ�m1 , . . . ,mK�=A�+B�m�, where A� and B� are independent
of m�, but depend on J and other magnetizations �m������.

For the quasientropy S�P�h�m���, we obtain the following
expression:
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S =� �dh�m��L�h�m�� � �d��m��

�exp�i� dm ��m�h�m���̃���m�� , �28�

with �̃���m�� given by

�̃ = P̃���m���1 − i� dm ��m�u0�m� − ln P̃���m��� ,

�28a�

which in turn is written in terms of the functional Fourier

transform of P�h�m��, which we denote P̃���m��. It is im-
plied that the normalization inside the functional integral
over ��m� is such that the inverse Fourier transform of

P̃���m�� reproduces P�h�m��—i.e.,

��d��m��exp(i�dm ��m�h�m�)P̃���m��= P�h�m��.
The functional L�h�m�� is given by the following expres-

sion:

L�h�m�� = −
1

�
� dm e−�h�m�. �29�

The function u0�m� that appears in Eq. �28a� is entirely
due to the kinetic term K�s�t��. In the limit of continuous
magnetizations �L→�� it can be evaluated in closed form:

e−�u0�m� =
��

�1 − m2
I1����1 − m2� + �m − 1� + �m + 1� .

�30�

Observe that in the limit �=0 only contributions from m
= �1 are expected. It can be demonstrated that the free-
energy functional �24� may be reexpressed, using the re-
duced order parameter P�h�, in the form given by Eq. �8�.

It would seem from the form of Eq. �19� that the free
energy should correspond to the minimum of the free-energy
functional �24�. Because of the peculiar nature of the limit
n→0, this is not the case. It can be shown �52� that in the
classical limit ��=0� the free energy is a local maximum with
respect to symmetric perturbations of P�h� �i.e., such that
P�−h�=P�h�� and a local minimum with respect to anti-
symmetric perturbations �such that P�−h�=−P�h��. The
quantum case is considerably more complex; fortunately, we
only need to make sure that P�h�m�� makes the free-energy
functional F stationary and do not care whether it is a mini-
mum or a maximum.

A few notes must be made about approximations made in
this section. The assumption of replica symmetry is justified
for sufficiently small connectivities �; above the replica-
symmetry-breaking transition ��
�RSB�, it becomes an ap-
proximation. In contrast, the static approximation is not guar-
anteed to be exact anywhere except �=0. It is a type of
mean-field approximation, whereby fluctuating spins are re-
placed by average magnetizations.

The physical interpretation of the static approximation is
rather intuitive. One can define the effective classical model
with discrete spins replaced by continuous magnetizations

mi� �−1;1�. For a specific realization of disorder,

Z��J� =� �dmii=1
N e−�Heff��mi;�J�, �31�

where the effective Hamiltonian Heff��mi ; �J� is

Heff = �
�i1,. . .,iK�

ÊJ�mi1
, . . . ,miK

;Ji1,. . .,iK
� + �

i

u0�mi� ,

�31a�

where ��i1,. . .,iK� denotes a sum over all hyperedges ci1,. . .,iK
=1. Magnetizations mi roughly correspond to expectation
values ��̂i

z	. Equation �31� depends on � indirectly through
form of u0�m�.

It is known that the replica-symmetric approximation on
random hypergraphs �25� is exactly the Bethe-Peierls �BP�
approximation �53�. It can be demonstrated that the BP ap-
proximation for the effective classical model of Eqs. �31�
reproduces the replica-symmetric static free energy derived
in this section. For an alternative derivation of the free en-
ergy of quantum K-SAT �via the BP approximation� and
quantum belief propagation equations we refer the reader to
the supplementary materials �52�.

B. Stationarity condition and the Monte Carlo method

To complete the derivation of the replica free energy we
need to find P�h�m��, which makes the free-energy func-
tional F�P�h�m��� stationary with respect to small variations;
its value will be the desired free energy F, formally a func-
tion of �, �, and �. The stationarity condition may be written
as follows:

F
P�h�m��

� �
V

P�h�m��
−

S

P�h�m��
= const. �32�

The arbitrary constant appearing on the right-hand side of
Eq. �32� is a Lagrange multiplier associated with the normal-
ization condition ��dh�m��P�h�m��=1. Substituting expres-
sions �25� and �28� we will formulate the equation that must
be satisfied by the saddle-point value of P�h�m��. Due to a
remarkable cancellation, we will be able to write this self-
consistency equation in a relatively simple form.

Due to the specific form of the functionals �25� and �26�,
we may express the variation of V in the following form:

V
P�h�m��

= K�� �du�m��Q�u�m��L�h�m� + u�m��

− L�h�m��� . �33�

This identity can be used as a definition of a new functional
Q�u�m��. It is necessarily normalized to unity
(��du�m��Q�u�m��=1). We will see that its meaning is that
of the probability distribution of u�m�=uJ(m ; ��h��m��=2

K �),
where
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uJ„m;��h��m��…

=
1

�
��

�=2

K

ln � dm e−�h��m� − ln � �dm��=2
K

�exp�− �ÊJ�m,m2, . . . ,mK� − ��
�=2

K

h��m���� ,

�34�

and under the assumption that J is uniformly distributed and
h2�m� , . . . ,hK�m� are taken from P�h�m��.

On the other hand, the variation of the quasientropy with
respect to P�h�m�� reads

S

P�h�m��
= −

1

�
� �du�m��L�h�m� + u�m��

�� �d��m��exp�i� dm ��m�u�m��
� �ln P̃���m�� + i� dm ��m�u0�m�� .

�35�

Combining Eqs. �33� and �35� uncovers the following sys-
tem of self-consistency equations:

Q�u�m�� =� ��dh��m��=2
K ��

�=2

K

P�h��m��

� �†u�m� − uJ„m;��h��m��…‡	J, �36a�

P�h�m�� =� �d��m��exp�i� dm ��m�„h�m� − u0�m�…�
� exp K��− 1 +� �du�m��

�exp�i� dm ��m�u�m��Q�u�m��� . �36b�

In �36a� we use a functional generalization of the  function,
defined so that F�x�m��=��dy�m��F�y�m���x�m�−y�m��.
Note that Eq. �36b� may be written in an alternative form by
expanding the exponential in the integrand ( the term corre-
sponding to d=0 is e−K��h�m�−u0�m��):

P�h�m�� = �
d=0

�

fd�K�� � ��duk�m�k=1
d ��

k=1

d

Q�uk�m��

� �h�m� − u0�m� − �
k=1

d

uk�m�� . �36b��

The appearance of the Poisson distribution fd���= �d

d! e−� is
intimately related to the hypergraph model that we study, as
it is the distribution of the degrees �number of incident hy-
peredges� of the vertices. From the form of Eqs. �36a� and
�36b�� it is apparent that h�m� are properly associated with
the vertices of the random hypergraph, whereas u�m� corre-
spond to its hyperedges.

The system of equations �36a� and �36b� can be solved
iteratively. Starting from some initial distribution P�0��h�m��,
we may compute a sequence of �Q�r��u�m�� and �P�r��h�m��
by applying �36a� and �36b�. The limiting distribution

P*�h�m�� = lim
r→�

P�r��h�m�� �37�

must be a solution to the stationarity condition �32�. The
value of the free energy is obtained from F=�V−S, where
the quasipotential V is found by substituting P*�h�m�� into
�25�, and the expression for the quasientropy S is rewritten
using self-consistency equations �36a� and �36b�:

S = K�� �dh�m�du�m��P*�h�m��Q*�u�m��

� „L�h�m�� − L�h�m� + u�m��…

+� �dh�m��P*�h�m��L�h�m�� . �38�

The iterative procedure described above lends itself to a
straightforward implementation using a Monte Carlo
method. Observe that both expressions �36a� and �36b�� are
written as averages over probability distributions P�h�m��
and Q�u�m�� and vectors J. The Monte Carlo algorithm that
we describe below represents the distributions P�h�m�� and
Q�u�m�� as finite samples �hi�m�i=1

N and �ui�m�i=1
N . �Imple-

mentation details of memory representation of functions
h�m� and u�m� are not discussed here; we assume that it can
be done without any loss in precision.� A single iteration step
can be implemented as follows.

�i� Compute a sample �ui�m�. For each i� �1, . . . ,N, do
the following.

�a� Choose h2�m� , . . . ,hK�m� from the set �hi�m� uni-
formly at random.

�b� Choose a disorder vector J at random.
�c� Evaluate u�m�=uJ(m ; ��h��m��=2

K �) using Eq. �34�.
�ii� Compute an updated sample �hi��m�. For each

i� �1, . . . ,N, do the following.
�a� Choose a random integer d from the Poisson distribu-

tion with parameter K�.
�b� If k=0, let h��m�=u0�m�.
�c� Otherwise, choose u1�m� , . . . ,ud�m� from the set

�ui�m� uniformly at random.
�d� Evaluate h��m� using

h��m� = u0�m� + �
k=1

d

uk�m� . �39�

The convergence criterion for the algorithm is that step-to-
step fluctuations be entirely due to the finiteness of N—i.e.,
that both the old �hi�m� and the updated �hi��m� histograms
sample the same probability distribution. This can be verified
by the Kolmogorov-Smirnov test, for instance �54�.

C. Quantum limit (T=0, �
0)

A number of simplifications are possible in this limit.
Since all integrals over magnetizations have the form
�dm e−�f�m�, in the limit �→� they are dominated by the
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minimum value of f�m�. The replica free-energy functional
F�P�h�m�����V�P�h�m���−S�P�h�m��� retains the form
given by Eqs. �25� and �28�, but expressions �26� and �29�
for UJ��h��m�� and L�h�m�� simplify to, respectively,

UJ��h��m�� = min
�m�
�ÊJ��m�� + �

�=1

K

h��m��� − �
�=1

K

min
m

�h��m��

�40�

and

L�h�m�� = min
m

�h�m�� , �41�

while Eq. �30� assumes the asymptotic form

u0�m� = − ��1 − m2. �42�

Self-consistency equations retain the form of Eqs. �36a�
and �36b�, but the expression for uJ(m ; ��h��m��) reduces to
the following:

u�m� = min
m2,. . .,mK

�ÊJ�m,m2, . . . ,mK� + �
�=2

K

h��m���
− �

�=2

K

min
m

�h��m�� . �43�

The physical meaning of the effective fields h�m� is particu-
larly evident in the limit T=0. The free energy corresponds
to the minimum of the effective Hamiltonian of Eq. �31�:

HT=0��mi;�J� = �
�i1,. . .,iK�

Ê�mi1
, . . . ,miK

;Ji1,. . .,iK
�

− ��
i

�1 − mi
2. �44�

In the limit �→� the free energy is dominated by the second
term F=−�, which corresponds to a state with all spins com-
pletely polarized along the x̂ direction. In the limit �→0 the
free energy is expected to be F�0 in the satisfiable phase
and F�0 in the unsatisfiable phase.

For each spin, hi�m� is, up to a constant, the increase in
energy if the magnetization of spin i is set to m �magnetiza-
tions of other spins are allowed to adjust�.

It is possible to set up a deceptively simple system of
equations for magnetizations �m

i
* corresponding to the mini-

mum of �44�. Solving �HT=0 /�mi=0 we observe that m
i
* may

be represented in terms of scalar effective fields h
i
* via

m
i
* =

h
i
*

��2 + �h
i
*�2

, �45�

while each h
i
* is a sum of contributions uk from each hyper-

edge incident to vertex i. E.g., for K-SAT,

u
k
* = �

�=1

K 1 + J�m
k�
*

2
. �46�

The description of the problem in terms of the order pa-
rameter P�h*�—the histogram of fields h

i
*—is effective for

large values of � where �44� has only one local minimum.
However, in the limit of small � the number of local minima
becomes exponential in N, which is the essential reason for
the introduction of the functional order parameter.

IV. SMALL TRANSVERSE FIELD REGIME
AT ZERO TEMPERATURE

For small values of the transverse field, the free-energy
functional can be expanded in powers of � around �=0 cor-
responding to the classical limit. When the limit �=0 is
taken first followed by the limit T=0, the classical expres-
sion for the free energy �8� is obtained. We expect that the
physically relevant value of the free energy �unlike that of
the order parameter� cannot be affected by the order in which
the limits are taken. It is instructive to verify that the same
result is obtained when the limit T=0 is taken first, followed
by �=0. Even though the effective field functions h�m� will
be finite everywhere in the interval �−1; +1�, the value of the
free energy will be determined by the values h�1 attained on
both ends of the interval.

As a first step, we demonstrate that the function
uJ(m ; ��h��m��) is always convex. This convexity property
is valid for arbitrary values of �. We evaluate u�m� for some
linear combination of magnetizations m0 and m1. Writing
m

2
* , . . . ,m

K
* to denote the values of magnetization that mini-

mize the first term on right-hand side of Eq. �43� and using

the property that ÊJ�m1 , . . . ,mK� is a multilinear function of
magnetizations, we write the lengthy inequality proving the
convexity of u�m�:

u„�m0 + �1 − ��m1… = min
m2,. . .,mK

�ÊJ„�m0 + �1 − ��m1,m2, . . . ,mK… + �
�=2

K

h��m��� − �
�=2

K

min
m

�h��m��

= ��ÊJ�m0,m2
*, . . . ,m

K
*� + �

�=2

K

h��m
�
*� − �

�=2

K

min
m

�h��m���
+ �1 − ���ÊJ�m1,m2

*, . . . ,m
K
*� + �

�=2

K

h��m
�
*� − �

�=2

K

min
m

�h��m���
	 �u�m0� + �1 − ��u�m1� . �47�
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Using the convexity of u�m�, it can be established from Eq.
�36b�� that in the limit �=0 the effective field functions h�m�
are also convex due to the vanishing of u0�m�. The convexity

of h�m� and the multilinearity of ÊJ��m��, together, ensure

that expressions of the form ÊJ�m1 , . . . ,mK�+h��m�� achieve
their minimum values for m�= �1. Similarly, minima of ef-
fective fields h�m� can be replaced by min�h−1 ,h+1� due to
the convexity of h�m�. It follows that the value of the free
energy will be unchanged if minima over the interval
m� �−1; +1� are replaced with minima over the discrete set
m� �−1; +1. Hence, the free energy of the quantum model
in the limit �=0 must equal that of the classical model.

One corollary to this is that in the limit �=0 the
functions u�m� are piecewise linear. Indeed, du /dm

= �� /�m�ÊJ�m ,m
2
* , . . . ,m

K
*� may depend on m only indirectly

via �m
�
*�=2

K . Since m
�
*� �−1; +1, the slope of u�m� cannot

change continuously; instead, it assumes one of finitely many
values depending on the value of m.

So far, we have kept the derivation as general as possible.
In the following we restrict our attention to random K-SAT
proper described by the cost function �27�. In the limit �
=0 functions u�m� �sketched in Fig. 2� may be parametrized
by a single parameter u as follows:

u�m� = min„2,2�u�,1 − �sgn u�m… . �48�

Using the same letter for the function u�m� and the pa-
rameter u should not lead to confusion. We will always in-
clude the magnetization argument to refer to the function
u�m�. The value of u�m� for a particular magnetization �e.g.,
m=0 or m= �1� will be indicated using subscripts: i.e., u0,
u�1.

It can be seen from Eq. �48� that u= 1
2 �u−1−u+1�. Although

h�m�=u0�m�+�k=1
d uk�m� does not admit a simple parametri-

zation, we can still define the scalar h= 1
2 �h−1−h+1�. This

choice ensures that h=�k=1
d uk. As expected, u�m� defined by

Eq. �43� assumes the form of Eq. �48� and depends on
�h��m� only via �h�:

u = min„1,�J2h2�+, . . . ,�JKhK�+… , �49�

with �x�+ used to denote max�x ,0�.

This describes two different regimes. The function u�m�
has the form depicted in Fig. 2 �left� whenever
min���J�h��+�1 and that shown on the right if
min���J�h��+	1.

The order parameter P�h�m�� may be obtained by iterat-
ing Eqs. �36a� and �36b� starting from, e.g., P�0��h�m��
=�h�m�−u0�m�� corresponding to the noninteracting
model.2 The effects of small, but finite values of � can be
illustrated by performing a single iteration. Substituting
h2�m�= ¯ =hK�m�=u0�m� into �43� gives

uJ�m� = min
m2,. . .,mK

�2
1 + J1m

2 �
�=2

K
1 + J�m�

2
− �K − 1���1 − m2�

+ �K − 1�� . �50�

This expression is neither zero �as in the classical case� nor
even piecewise linear. It should be declared in advance that
we do not need the precise analytical expression for uJ�m� as
the free energy will not depend on such details. It is easily
seen that uJ�m� is monotonic in m and that it is zero at m
=−J1. In addition, one can demonstrate that

uJ�m� = � − o��� when 1 + J1m � � . �51�

When K	3 this approximate identity is strengthened to
uJ�m�=� for 1+J1m	C� �for some constant C�. This form
of uJ�m� is sketched in Fig. 3 �left� for J1�0 �in this par-
ticular case u�0�=��. Since we are not concerned with the
precise form of u�m�, it is still permissible to describe it
using a single parameter u= 1

2 �u−1−u+1� �which would equal
−J1� /2 in the present case�. Expression �48� would apply
everywhere on �−1; +1� except for the vicinity of m=sgn u,
where 1− �sgn u�m=O���. Note that if either 1− �sgn u�m

2When �=0, as P�0��h�m��=�h�m�� could be a metastable solu-
tion. However, for finite �, successive iterations will always con-
verge to the stable solution.

FIG. 2. Form of u�m� in the classical limit ��=0�. Two cases are
depicted: �a� �u��1, u
0 and �b� �u�=1, u
0. Analogous figures
for u�0 may be obtained by mirror reflection m→−m. FIG. 3. Possible form of u�m� for finite, but small �. The figures

depict two possibilities corresponding to u
0 �u�0 corresponds to
mirror images m→−m�: �a� �u��� /2 and �b� �u�	1−� /2. For
1�m=O���, the functions u�m� are not piecewise linear. Together
with Fig. 2, this encompasses all possible forms of u�m� in the limit
of small �.
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�� or 1− �sgn u�m��, expression �48� remains valid up to
o���.

By considering additional iterations of Eqs. �36a� and
�36b� it is possible to classify all possible forms of u�m� that
can be encountered. In addition to the piecewise linear forms
of Fig. 2, it may have one of the forms depicted in Fig. 3.
The latter form may occur only if �u��� /2 �Fig. 2, left� or
1−� /2� �u��1 �Fig. 2, right�.

Observe that Eq. �48� is approximately valid for all m,
with the possible exception of 1− �sgn u�m��. Recognizing
that u�m� is monotonic and that �du /dm��1, we can restate
the condition in an equivalent form. We require that du /dm
approximately �up to o���� equal either 0 or �1 for 1− �m�
��. For values of m such that 1− �m�=O�1� the derivative
du /dm equals either 0 or �1 with a correction of at most
O��2�.

To investigate the qualitative form of effective fields h�m�
write Eq. �39� substituting the value of u0�m�:

h�m� = − ��1 − m2 + �
k=1

d

uk�m� . �52�

The function h�m� is a sum of one concave and d convex
functions. One of the possible forms of h�m� is sketched in
Fig. 4. All features that are o��� have been suppressed. In
particular, Fig. 4 fails to reflect the fact that the locations of
the local minima at m= �1 are shifted by O��2�.

In general, local minima of h�m� away from the end
points of the interval �−1; +1� must satisfy dh /dm=0. Since
duk /dm are approximately integers for 1− �sgn u�m��, such
local minima can exist only if �k�duk /dm�m=0�0 and can
only be located at m��0 �up to O����. Neglecting contribu-
tions of O��2� and higher, the free energy is determined by
values of u�m� and h�m� at m=0 or m= �1.

We will parametrize each of u�m� and h�m� by the scalars

u, ū and h, h̄, respectively. We define

u =
u−1 − u+1

2
, �53a�

ū =
u−1 − 2u0 + u+1

2
. �53b�

And h and h̄ parametrizing h�m� of Eq. �52� are chosen as
follows:

h = �
k=1

d

uk, �54a�

h̄ = �
k=1

d

ūk. �54b�

Note that u and ū are not independent variables, but are
related by

ū = min��u�,1 − �u�� . �55�

Combining Eqs. �48�, �52�, and �53�, we obtain, for values of
h�m� at m= �1 and m=0,

h�1 = �
k=1

d

�uk� � h , �56a�

h0 = �
k=1

d

�uk� + h̄ − � . �56b�

The expression �k=1
d �uk� represents a constant shift which

must cancel out in the expression for the free energy. This

cancellation allows one to parametrize h�m� by h and h̄
alone.

It is straightforward to rewrite the self-consistency equa-

tions �36� in terms of the reduced distributions P�h , h̄� and
Q�u , ū�. However, it is more instructive to derive self-
consistency equations from the stationarity condition for the

free-energy functional F�P�h , h̄��, which is obtained by us-
ing our ansatz for h�m�.

As before, we separate the free-energy functional into two
parts corresponding to the quasipotential and quasientropy:

F�P�h , h̄��=�V�P�h , h̄��−S�P�h , h̄��. We write down with-

out proof the expression for the quasientropy S�P�h , h̄��:

S =� dh dh̄L�h, h̄� � d� d�̄

�2��2 ei�h+i�̄h̄�̃��,�̄� , �57�

where L�h , h̄� and �̃�� , �̄� are given by, respectively,

L�h, h̄� = max��h�,� − h̄� , �57a�

�̃��,�̄� = P̃��,�̄��1 − ln P̃��,�̄�� , �57b�

with P̃�� , �̄�=�dh dh̄e−i�h−i�̄h̄P�h , h̄� used to denote the

Fourier transform of P�h , h̄�. The derivation of this expres-
sion is straightforward and relies on the ability to replace all
minima over magnetizations in the interval �−1; +1� by
those over the discrete set m� �0, �1.

The derivation of the quasipotential is slightly more intri-
cate. The minimum of

FIG. 4. Typical form of the function h�m�, parametrized by h

and h̄. In general, h= 1
2 �h−1−h+1�. The distance from the middle

minimum at m�0 to the center point of the line joining h�−1� and

h�+1� is �− h̄. All features O��2� have been suppressed �see discus-
sion in the text�.

STATISTICAL MECHANICS OF THE QUANTUM K-… PHYSICAL REVIEW E 78, 061128 �2008�

061128-11



ÊJ��m1, . . . ,mK� = 2�
�=1

K
1 + J�m�

2
+ �

�=1

K

h��m�� �58�

may occur only for m1 , . . . ,mK=0, �1. It is unnecessary to
consider all 3K possibilities, however. Let m�

� denote the lo-
cation of a global minimum of h��m�. The location of the
global minimum of �58� is such that m�=0 or m�=−J� for
some �, while all other magnetizations are m��=m��

� . It is
never advantageous to have more than one magnetization
different from m�

� as long as ��1.

Therefore, ÊJ��m1 , . . . ,mK� may be written as a minimum
over just K distinct possibilities. After some algebra we ob-
tain the following expression for the quasipotential

V�P�h , h̄��:

V =� �dh�dh̄��
�=1

K

P�h�, h̄���UJ��h�, h̄��	J, �59�

with UJ��h� , h̄�� given by

UJ��h�, h̄�� = 2 min
�=1,. . .,K

���J�h�,� − h̄�� , �59a�

and the definition of ��h ,�� is

��h,�� = min„1,�h�+… +
1

2
�� − �h��+ −

1

2
�� − �h − 1��+

�59b�

�the auxiliary function ��h ,�� is sketched in Fig. 5 for illus-
trative purposes�. Note that for ��0, Eq. �59b� reduces to
��h ,��=min(1, �h�+).

It is immediately seen that in the limit �=0, Eqs. �57� and

�59�, rewritten in terms of P�h�=�dh̄ P�h , h̄�, coincide with
classical T=0 expressions for the quasientropy and quasipo-
tential, respectively.

The stationarity condition is ��V−S� /P�h , h̄�=const. It
should come as no surprise that the following identity holds:

V

P�h, h̄�
= K�� du dūQ�u, ū�L�h + u, h̄ + ū� − L�h, h̄��

+ const, �60�

where Q�u , ū� is effectively a distribution of just one param-
eter u:

Q�u, ū� = Q�u�„ū − min��u�,1 − �u��… , �61a�

Q�u� =� �dh�dh̄��
�=2

K

P�h�, h̄��u�;J��h�, h̄��=2
K � , �61b�

with u�;J�h2 , h̄2 ; . . . ;hK , h̄K� given by

u�;J��h�, h̄�� = min
�=2,. . .,K

���J�h�,� − h̄�� . �61c�

Solving the stationarity condition reveals the following rela-

tionship between P�h , h̄� and Q�u , ū�:

P�h, h̄� =� dh dh̄ ei�h+i�̄h̄ exp K�Q̃��,�̄� , �62�

where Q̃�� , �̄� is the Fourier transform of Q�u , ū�. An alter-
native form of �62� is

P�h, h̄� = �
d

fd�K�� � �dukdūk�
k=1

d

Q�uk, ūk�

��h − �
k=1

d

uk��h̄ − �
k=1

d

ūk� . �62��

The order parameter can be found by solving Eqs.
�61a�–�61c� and �62� self-consistently. It is straightforward to
write down belief propagation equations in the limit ��1
for a particular disorder realization by “reverse-engineering”

these relations, interpreting P�h , h̄� and Q�u , ū� as the histo-
grams of effective fields associated with vertices and hyper-
edges of the random hypergraph.

V. CLASSICAL ZERO-TEMPERATURE
SOLUTION REEXAMINED

The main goal of the present work is the study of the
phase transition in quantum K-SAT at the replica-symmetric
level. It is fair to compare those results with the results on
finite-temperature K-SAT using same replica-symmetric ap-
proximation. The limiting cases �=0 or T=0 in both models
correspond to zero-temperature K-SAT. It has been solved at
the replica-symmetric level in Ref. �23�. �Moreover, a one-
step RSB solution is also available �25,28�.� However, we
are forced to briefly reexame this problem. We will demon-
strate that the longitudinally stable replica-symmetric order
paramater changes continuously from zero across the phase
transition in connectivity �. This result contradicts the pre-
diction of �23�, that the order parameter jumps discontinu-
ously. We believe that this apparent discontinuity of the order
paramater is merely an artifact of discretization used in the
numerical procedure.

FIG. 5. The form of the function �=��h ,�� defined in Eq.
�59b�.
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In this section we consider the model described by the
free-energy functional �8�, but with the expression �9� modi-
fied to

UJ
�O��h1, . . . ,hK� = 2 min

�=1,. . .,K
��J�h��+ . �63�

We will refer to this modified version as Model O. The origi-
nal version will be called Model A.

The distinguishing feature of Model O is the absence of
any explicit scale. The free-energy functional becomes cova-
riant with respect to scaling transformation �rescaling of ef-
fective fields by a factor of ��:

F�O���P�h/��� = �F�O��P�h�� . �64�

The immediate consequence is that the maximum value of
F�O��P�h�� can be either 0 or +�, depending on the value of
�.

Under successive iterations of self-consistency equations
for P�h� and Q�u�, the distribution quickly converges to a
universal form, with any subsequent iterations merely rescal-
ing effective fields by a factor of � that depends on the value
of �:

P�r+1��h� = �P�r��h/�� . �65�

The width of the distribution �=�dh P�h��h� serves as a sim-
plified order parameter: it flows toward fixed points ��=0 or
��= +� for ���c or �
�c, respectively. The threshold �c
is determined from

���c� = 1. �66�

Note that this condition is equivalent to F�P��h��=0, where
the limiting distribution P��h� has been rescaled so that it has
finite nonzero weight. Both P�h� and Q�u� contain a
-function peak at zero as well as a continuous part:

P�h� = �1 − q��h� + q��h� , �67a�

Q�u� = �1 − �q

2
�K−1��u� + �q

2
�K−1

��u� . �67b�

The self-consistency condition for singular components of
P�h� and Q�u� may be written as follows:

q = 1 − exp�−
K�

2K−1qK−1� . �68�

A similar equation appears in the analysis of the leaf-removal
algorithm for random K-XOR-SAT �55�. The correspondence
becomes exact with the replacement � /2K−1→�. A nontrivial
solution to Eq. �68� appears discontinuously above some
threshold �q ��q�3.276 for K=3�. However, this threshold
is irrelevant for our problem, because the corresponding
���q��1. The value of �c is determined from self-
consistency equations for continuous parts:

��u� = �K − 1���u���
�u�

+�

dh ��h��K−2

, �69a�

��h� = �
d=1

�
�̃c

d

e�̃c − 1
� �duk�

k=1

d

��uk��h − �
k

uk� ,

�69b�

where we have substituted �=1 �the “renormalized” connec-
tivity is �̃c=K�cq

K−1�. Solving these equations iteratively we
obtain �̃c�3.1650, which translates into �c�4.6002, in
agreement with �23�. In Fig. 6 we plot ���h� at the critical
value of �.

It is not coincidental that the critical threshold in this sim-
plified model is the same as in real T=0 classical K-SAT
�Model A�. The only difference between the two models is
the interaction term

UJ
�A��h1, . . . ,hK� = min„2,UJ

�O��h2, . . . ,hK�… . �70�

When the width of the distribution ��1, Models O and A
are roughly equivalent. The only effect of this modification is
to prevent the divergence of �� for �
�c.

The solution of Model O may serve as a variational ansatz
for the solution of Model A, which will be increasingly pre-
cise as the transition is approached. We take P�

� �h�—the
scale-invariant solution of Model O, appropriately rescaled
to have width �. The variational free energy may be written
as follows:

Fvar
�A���� = �� − �c�V�O��P

�
*�h�� − ��

1

�

dh��
h

�

dh�P
�
*�h���K

.

�71�

The asymptotic form of P
�
*�h� is related to that of �*�h� �see

Fig. 6, inset�:

�*�h� � e−��h��h�, �72�

where ��h� is a function of very slow growth. In particular, it
grows slower than the iterated logarithm of �h�. Therefore, in
the limit ��1, the correction term in �71� scales as
e−��1/��/�. Hence, the free energy may be written as follows:

FIG. 6. Scale-free solution �*�h� of Eqs. �69� for �̃= �̃c. The
inset shows ln ��h� to illustrate the approximately exponential de-
crease of ��h� as h→�.
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Fvar��� � ��� − �c�� − e−��1/��/�. �73�

Solving dFvar /d�=0 with respect to � yields

� − �c �
1

�2e−��1/��/�. �74�

With some abuse of notation �we write x
y to mean that x is
asymptotically proportional to y with the coefficient of pro-
portionality being an extremely slow-varying function of y�,
the dependence of the order parameter � on connectivity �

�c may be written as follows:

� 

1

�ln�� − �c��
. �75�

Given the extremely singular character of this function, it is
not surprising that the transition looks like a first-order tran-
sition in numerical simulations. The critical exponents �=1
and �=0 are precisely those expected for the first-order tran-
sition �the scaling exponent associated with the logarithm is
zero�. In the vicinity of the phase transition, just above it, the
behavior of the free energy is

F 

� − �c

�ln�� − �c��
. �76�

We corroborate this prediction by a numerical study. We
are primarily interested in ����: the dependence of the order
parameter on connectivity. However, the convergence of the
Monte Carlo algorithm is too slow for ���c. The number of
iterations of self-consistency equations for P�h� and Q�u�
necessary to ensure convergence diverges near the phase
transition. To avoid this problem, we compute the inverse
����. Instead of iterating self-consistency equations for fixed
connectivity � until convergence of �, we fix the width of
the distribution � and tune the value of � at each step so that
the width of P�h� remains the same. With this approach,
convergence of � is always complete �to within machine
precision� in under 20 iterations.

In addition, the Monte Carlo procedure is replaced with a
quasi–Monte Carlo procedure, which we have formulated
specifically for problems involving probability distributions.
The detailed description of the method is in the Appendix.
The advantage of using the quasi–Monte Carlo method is a
dramatic reduction of numerical error. All numerical results
presented in this paper are obtained using this method.

In Fig. 7, we plot the function ���� obtained numerically.
To establish that the phase transition is continuous, we must
convince ourselves that ���� is a strictly increasing function
of �—i.e., that ����
��0� for arbitrarily small �. The inset
shows the roughly linear dependence of f�� ,��= �C
−ln �2��−�c��−1 on � �cf. Eq. �74�� that, when extrapolated,
predicts the vanishing of � as �→�c.

In Fig. 8, we plot the dependence of the free energy F on
connectivity � in the vicinity of �c. Contrary to visual per-
ception, the slope of F��� at �=�c+0 is zero from Eq. �76�.
The “apparent” slope �F /�� decreases as a function of ��,
as can be seen by comparing the main figure with the inset in
Fig. 8.

VI. NUMERICAL RESULTS

A. A Classical regime (�=0, T
0)

In addition to Models O and A described in Sec. V, we
introduce two new models: classical Models B and AB. Clas-
sical Model AB is precisely the finite-temperature classical
random K-SAT. The distinguishing feature of Model B is the
absence of explicit temperature. It is defined using Eqs. �25�
and �28�, but with the following choice for UJ��h�� and
L�h�, respectively:

U�B� = − ln�1 −
1

�1 + e−2J1h1� ¯ �1 + e−2JKhK�� , �77a�

FIG. 7. Connectivity � vs width of the distribution of effective
fields � in Model A. We predict that �
�c for any �
0, so ����
has no discontinuities. The inset replots the data to illustrate the
asymptotic relation �74�. The y-axis corresponds to f�� ,��= �3.5
−ln �2��−�c��−1, which is asymptotically linear in � as �→0. The
dotted line is the result of extrapolation to small values of ��−�c�
where the numerical error is too large.

FIG. 8. Free energy F vs connectivity �. Contrary to visual
perception, F��� is not linear for �
�c. The inset zooms in on the
transition, keeping the aspect ratio the same. The apparent slope of
F��� in the inset is smaller. This apparent slope will tend to zero as
progressively higher zoom ratios are used.
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L�B� = ln�2 cosh h� . �77b�

All four models �O, A, B, and AB� can be described by a
single form of the free-energy functional that depends explic-
itly on two parameters: the temperature T=1 /� and the en-
ergy scale parameter �. This common model can be defined
using the following expression for UJ��h�� and L�h�:

UT,� = − T ln�1 −
1 − e−2�/T

��=1
K �1 + e−2J�h�/T�

� , �78a�

LT,� = T ln�2 cosh
h

T
� . �78b�

We summarize the values of T and � for the four models we
have introduced in Table I.

This common model with explicit dependence on T ,�
satisfies the following scaling relations:

FT,��P�h�� = TFT=1,��TP�h/T�� �79a�

=�FT,�=1��P�h/��� . �79b�

The implication is that the statistical-mechanical properties
of this model depend on the ratio of two scales T /�. In
particular, we expect that Models O, A, and B undergo a
phase transition at the same value of the critical connectivity,
since T /�=0 in all three models. We have previously estab-
lished that �c

�A�=�c
�O�.

The numerical results for the classical Model B are pre-
sented in Figs. 9 and 10. To obtain the numerical solution,
we adopted the same strategy as for Model A. We computed
� as well as a number of other quantities for each value of �.
An interesting feature of Model B is that the function ����
plotted in Fig. 9 is nonmonotonic and cannot be inverted
unambiguously for �
��B��+��. Although not reflected in
the figure, formally there exists another solution correspond-
ing to �= +�, with the free energy F= +��−�� for �

�c

�O� ���c
�O��. Since a branch with the higher free energy

must be chosen, the branch �*��� +� is unstable and
F�B�= +� for �
�c

�O�.
Whereas the free energy F�A� of Model A �see Sec. II�

corresponds to the internal energy E of Eq. �7� �or the num-
ber of violated constraints�, the free energy of Model B is
related to the entropy �:

− NF�B� = ��	 = �ln NS	 , �80�

where NS represents the number of solutions that satisfy all
constraints. The divergence of F�B� signals the transition to
the unsatisfiable phase �NS=0�.

In Fig. 10 we plot the specific entropy �i.e., the negative
of the free energy� as a function of �. Note that since the
entropy is finite at �=�c, the number of solutions, just prior
to the satisfiability transition, is exponentially large. It is the
expected behavior: for the associated hypergraph, random
graph theory �56� predicts that there are O�N� vertices that
are either isolated or belong to small isolated clusters. These

TABLE I. Four different models defined by the values taken by
parameters T and �. Statistical properties of Models O, A, and B
should be similar, since T /�=0 in all three cases. Model AB is the
classical finite-temperature random K-SAT.

Type of model Temperature Scale �

Model O T=0 �=�

Model A T=0 �=1

Model B �classical� T=1 �=�

Model AB �classical� T
0 �=1

FIG. 9. Connectivity � vs width of distribution of effective
fields � in classical Model B. The main figure shows ���� in the
region close to critical. The inset shows ���� in a wider range. The
branch �
�* is unstable; hence, �= +� as soon as �
�c. The
unstable branch is drawn with the gray solid line.

FIG. 10. Specific entropy � /N �logarithm of the number of
solutions� as a function of �. The main figure shows the depen-
dence in the critical region, while a wider range of � is used for the
inset. The unstable branch ��
�*� is drawn in gray. The entropy
decreases to �* as � approaches �c, but jumps to −� �correspond-
ing to zero solutions� for �
�c. Entropy corresponding to very
large values of � in the unstable branch could not be determined
with good precision. Results of extrapolation are indicated using the
dotted gray line.
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make a finite contribution to the entropy, but do not affect the
overall satisfiability of the random instance.

Based on results for Model B we expect that the non-
monotonic behavior of ���� persists for some sufficiently
small but finite temperatures. In Fig. 11 we plot the functions
���� for the classical Model AB for a range of temperatures
from T=0.01 to T=0.5. It is seen that far away from �=�c

Model AB interpolates between the regimes of Model B with
�=O�T� and Model A with �=O�1�. For small temperatures
���� is nonmonotonic, which gives rise to the first-order
phase transition.

We make two-dimensional parametric plots (���� ,F���)
for a range of temperatures T �see Fig. 12�. For T�T* these
curves are self-intersecting. Stable branches �black solid
lines� have a discontinuous slope at the point of self-
intersection which leads to the discontinuity of the order pa-
rameter. The dashed green line �marked �2� in the figure� is
the line of singularities between ��c ,0� and ��* ,F*� termi-
nating at the critical point. In the space of variables �� ,T ,F�
stable and unstable branches of F form a dovetail singularity.
It should be recalled that for T=0 the derivative dF /d� has
no discontinuity, although it is difficult to see from the figure.

Finally, in Fig. 13, we show the numerical phase diagram
in the plane �� ,T�. The discontinuity of the order parameter
becomes zero at both ends of the phase boundary between
��c ,0� and ��* ,T*�.

B. Quantum regime (�
0, T=0)

We introduce quantum Model B and quantum Model AB
as follows. We will keep the definition �57� for the quasien-
tropy, but in the definition �59� for the quasipotential the
function ��h ,�� will be replaced with

���h,�� = min„�,�h�+… +
1

2
�� − �h��+ −

1

2
�� − �h − ���+,

�81�

so that the free-energy functional will contain a characteristic
scale of the effective fields � explicitly. By choosing the
values of � and � according to Table II we define the two
quantum models: Models B and AB. The purely classical

FIG. 11. The dependence ���� in classical Model AB for a
range of temperatures. Curves labeled �1�–�6� in the inset corre-
spond to temperatures T=0.01, 0.02, 0.05, 0.1, 0.2, and 0.5, respec-
tively. The temperatures are labeled explicitly in the main figure.
The curves smoothly interpolate between the regime of Model B
��=O�T�� and that of Model A ��=O�1��. The inset shows that
���� is not monotonic for sufficiently small temperatures.

FIG. 12. �Color� Two-dimensional parametric plots (���� ,F���)
for classical Model AB �finite-temperature K-SAT�. Different lines
correspond to different temperatures. Black solid lines correspond
to the stable branches of the free energy; gray lines correspond to
unstable solutions. Switching between stable branches occurs along
the green dashed line �2�. Along this line, the first derivative dF /d�
of the free energy has a discontinuity. Red dashed lines �1� and �3�
are the spinodals dV /dS=0. Points A and B along T=0 line corre-
spond, respectively, to the critical threshold in Model A and the
metastable solution ��4.6184 of Model B. Lines �1�, �2�, and �3�
meet at a critical point C, corresponding to T��0.05864. Note that
the line BC is nearly vertical, with corrections that are

exp�−1 /T�.

FIG. 13. Numerical phase digram of classical Model AB �finite-
temperature K-SAT�. The phase boundary �phase transition line�
starts from T=0, critical connectivity �c, and terminates at the criti-
cal point with ���4.6185 and T��0.05864.
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models–Models O and A–correspond to the limit �=0.
Ordinarily, the free energy of the quantum model corre-

sponds to the smallest eigenvalue of the Hamiltonian. How-
ever, in the limit �= +�, where � defines the energy scale of
the classical Hamiltonian, the contribution from the states
with energy �
0 vanishes. The value F�B� of the free energy
for an instance of Model B may be evaluated using the de-
generate perturbation theory. In the limit �= +�, this free
energy is proportional to �, which can also be seen from
scaling analysis. We choose �=1; the free energy F�B� is
directly related to a property of the space of solutions �.

Consider a graph G having NS vertices corresponding to
spin configurations that satisfy all constraints. We draw
edges between vertices of G corresponding to configurations
� and �� that differ by a single spin flip. Let A denote the
adjacency matrix for this graph—i.e.,

A��� = �1 if d��,��� = 1,

0 if d��,��� = 0 or d��,��� 	 2,
� �82�

where d�� ,��� denotes the Hamming distance between spin
configurations � and ��. The free energy of Model B will be
related to the norm of matrix A:

− NF�B� = ��A�	 = ��max�A����	 �83�

�the spectrum of A��� is symmetric�.
The expression for the free energy may be simplified in

the limit �= +�. Since in this limit ū= �u� and u is equally
likely to be positive or negative, we may express the joint
probability distribution Q�u , ū� in terms of the probability
distribution of ū denoted Q+�ū�:

Q�u, ū� =
1

2
�Q+�ū��u − ū� + Q+�ū��u + ū�� . �84�

Substituting this into Eq. �62�, we obtain the following fac-

torization of the joint distribution P�h , h̄�:

P�h, h̄� = P+� h̄ + h

2
�P+� h̄ − h

2
� , �85a�

P+�h̄� =� dh̄ ei�̄h̄ exp
K�

2
„Q̃+��̄� − 1… . �85b�

We can use relations �84� and �85� to write the free energy as

a functional of P+�h̄� alone. The resulting expression for
F�P+�h�� is

F�B��P+�h�� = �� �d���
�=1

K

R�����2 min
�=1,. . .,K

����
−� dh1dh2L�h1,h2�

�� d�1d�2

2�
ei�1h1+i�2h2�̃��1,�2� , �86�

where the expressions for L�h1 ,h2� and �̃��1 ,�2� are

L�h1,h2� = max��h1 − h2�,� − h̄� , �86a�

�̃��1,�2� = P̃+��1�P̃+��2��1 − ln P̃+��1� − ln P̃+��2��
�86b�

�P̃���, as usual, denotes the Fourier transform of P�h��.
The distribution R��� that enters on the right-hand side of

Eq. �86� may be related to P+�h� as follows:

R��� =� dh1dh2P+�h1�P+�h2�

��� − „max��/2,h1� − h2…+� . �87�

The numerical results for quantum Model B are presented in
Figs. 14 and 15. In contrast to classical Model B, ���� is a
monotonically increasing function of � �see Fig. 14�. Its in-
verse ���� is a single-valued function exhibiting no discon-
tinuities. It diverges as � approaches �c. It is fortunate that
there is a single branch, as the stability analysis is more
complicated in the quantum case.

In Fig. 15, we plot �A� /N: the norm of the matrix describ-
ing the connectivity of solutions. It is seen that this quantity
does not go to zero as �→�c. This can be explained by the
effect of small clusters in a random hypergraph associated
with an instance. This hypergraph is a collection of isolated
clusters: a giant cluster of size O�N� and a large �O�N��

TABLE II. Four different models defined by the values taken by
parameters � and �. Statistical properties of Models O, A, and B
should be similar, since � /�=0 in all three cases. Model AB is
quantum random K-SAT; we study the limit ��1.

Type of model Transverse field Scale �

Model O �=0 �=�

Model A �=0 �=1

Model B �quantum� �=1 �=�

Model AB �quantum� �
0 �=1

FIG. 14. Connectivity � vs width of the distribution of effective
fields � in quantum Model B. The main figure shows ���� in the
region close to critical. Since ���� is monotonic, there is only a
stable branch. The inset shows ���� in a wider range. As � ap-
proaches �c the value of � increases to infinity continuously.
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number of small clusters. Each cluster may be used to define
a subinstance of the problem. The space of solution of the
large instance is a Cartesian product of spaces of solutions of
subinstances. It can be shown that the norm �A� for the full
instance may be written as a sum of norms �Ak� for all the
subinstances corresponding to isolated clusters. The large
number of small clusters contributes to the finite value of
�A� as �→�c.

We should mention that the computed value of F�B� is not
quantitatively correct even in the regime where the replica-
symmetric solution is stable. This is due to our making a
static approximation. Although quantum Model B describes
the limit �→0, the static approximation requires a stronger
condition ��→0 in order to be exact. We however work in
the opposite limit ��→�.

Numerical results for quantum Model AB are presented in
Fig. 16. We plot ���� for a transverse field � ranging from
�=0.001 to �=0.1. It can be seen that the functions ���� are
always monotonic. In contrast to classical Model AB, the
free energy does not exhibit nonanalytic behavior. The con-
tinuous phase transition present for �=0 disappears and is
instead replaced by a smooth crossover for arbitrarily small
�
0 as depicted in Fig. 17. The effect of the critical point
��=�c ,�=0� is that the width of the transition �� goes to
zero together with �.

We conjecture, by analogy with quantum phase transitions
in physical systems, that the characteristic width of the tran-
sition scales as some power of �:

�� � �1/z. �88�

The width of the transition has been formally defined as
follows:

�� = �*min
�
� d�

d�
� , �89�

where �* corresponds to the minimum of d� /d�. The power
law �88� may be verified by plotting points ��� and �� on a

log-log plot �see Fig. 18�. For small �, the data seem to
converge to power-law scaling with scaling exponent z=1
�the slope corresponding to z=1 is indicated with the gray
solid line�. However, we have not studied this scaling depen-
dence analytically and cannot completely rule out the possi-
bility that the dependence of the width of the transition on �
is more complex and cannot be described by a simple power
law.

VII. CONCLUSION

The main result of this paper is that the thermodynamic
phase transition between SAT and UNSAT phases in the clas-
sical random K-satisfiability problem does not survive when
quantum effects are incorporated via coupling to the external
transverse magnetic field. We have studied the free energy as
a function of connectivity � for different values of the trans-
verse field �. The case �=0 corresponds to the purely clas-
sical limit, and there exists a phase transition when � is

FIG. 15. The norm �largest eigenvalue� of matrix A, defined by
Eq. �82�, as a function of �. The main figure shows the dependence
in the critical region, while a wider range of � is used for the inset.
There is only a stable branch. Values of �A� that could not be
computed reliably for very large � are estimated using extrapola-
tion, which is indicated by the use of black dotted line.

FIG. 16. The dependence ���� in quantum Model AB for a
range of transverse magnetic fields. Curves labeled �1�–�7� in the
inset correspond to transverse fields �=0.001, 0.002, 0.005, 0.01,
0.02, 0.05, and 0.1, respectively. The curves in the main figure are
explicitly labeled with values of �. The curves smoothly interpolate
between the regime of Model B ��=O���� and that of Model A
��=O�1��. In contrast to the classical case, the functions ���� are
monotonic and free of singularities.

FIG. 17. Illustration of crossover transition for quantum K-SAT.
The sharp phase transition predicted in classical K-SAT is the criti-
cal point at �=0. For small but nonzero values of � it is replaced by
a smooth crossover transition of finite width between the undercon-
strained ����c� regime described by Model B and the overcon-
strained ��
�c� regime described by Model A. The width of the
critical region decreases as �→0.
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crossing its critical value. We have demonstrated that for any
small value of � the free energy becomes analytic and the
sharp phase transition at �=0 is replaced by a smooth cross-
over transition. This stands in contrast to the classical
K-satisfiability model at finite temperatures, where we have
found a first-order phase transition line on the temperature-
connectivity plane approaching continuously a zero-
temperature limit. However, it is not inconceivable that the
seeming difference between the classical and quantum cases
is an artifact of the replica-symmetric approximation. The
RSB analysis of dilute antiferromagnetic Potts glass at finite
temperature indicates that the analogous zero-temperature
static transition becomes a smooth crossover at finite tem-
perature �57�. Whether the inclusion of RSB in T
0 classi-
cal K-SAT will similarly lead to the smoothing of the static
transition is open to investigation.

We believe the above-mentioned phenomenon is not uni-
versal among dilute long-range spin glasses. We expect that
in models with Ising or p-spin interactions the phase transi-
tion at �=�c is not affected by transverse fields below a
certain threshold ����c� and that the phase boundary has
the form of the line labeled �1� in Fig. 1. We attribute the
difference to the fact that constraints involved in Viana-Bray
and dilute p-spin models are “stronger” �i.e., a greater num-
ber of spin combinations are penalized� than those in
K-satisfiability.

The limitations of our approach are the assumptions of the
replica symmetry and the failure to include the time depen-
dence of correlation functions. The latter approximation has
been justified on the ground that we work in the limit of
small transverse fields, as we establish the absence of a phase
transition line on the �� ,�� plane. It is known that the
replica-symmetric approximation can capture the existence
of the thermodynamic transition in the classical
K-satisfiability model while providing an overestimated
value for the transition point �critical connectivity�.

Previously, we attempted to analyze the O��� corrections
to the free energy of the �=0 �classical� K-SAT problem

along similar lines �58�. In contrast to the present analysis,
we computed corrections to the integer--peak solution �12�
of zero-temperature classical K-SAT developed in Ref. �23�.
Although the assumption of integer values of the effective
fields is more natural for T=0, �=0 and has been used to
construct an RSB theory of T=0 K-SAT �25�, at the replica-
symmetric level it does not give a truly stable solution for
either T
0 or �
0. At the same time, the solution derived
in the present paper is globally stable in the RS sector at
finite temperatures and transverse fields.

To obtain a correct location of the phase transition one
needs to take into account the spontaneous breaking of the
replica symmetry �25�. However, we hope that our main
result—the smoothing of the phase transition at finite values
of the transverse field—will be immune to the effects of the
replica symmetry breaking. On the other hand, it is well
known that the replica-symmetric approximation fails to ac-
count for the dynamic transition and the complex structure of
local minima existing in the classical K-satisfiability model
at connectivity that is smaller than that of the static transi-
tion. From the perspective of the quantum adiabatic algo-
rithm, the likely conclusion is that the bottleneck of the QAA
may be in this dynamic transition rather than the static tran-
sition. Recent results on K-SAT show the presence of another
transition: the so-called condensation transition �which coin-
cides with the dynamic transition for K=3� �27,28�. It is
believed that the crossover to the exponential complexity of
the classical algorithm happens at the condensation transi-
tion. It may also be relevant for the performance of quantum
adiabatic family of algorithms.

Since the nonanalytic behavior of the free energy associ-
ated with the static transition is the isolated singularity, it
should be irrelevant to the complexity of the QAA except
when �=�c precisely. It is conceivable that the complexity of
the QAA will be subexponential for ���c if singularities of
the free energy associated with, e.g., the condensation tran-
sition are weaker than that of static �satisfiability� transition.

The analysis of a quantum version of the K-satisfiability
problem led us to a reexamination of the static phase transi-
tion in the zero-temperature classical limit. In Ref. �23� it has
been predicted, using a replica-symmetric analysis, that this
phase transition is of a random first order �discontinuous�
type. We have found that the transition is, in fact, of second
order �continuous�. In the vicinity of the phase transition, the
functional order parameter is given by the new scale-free
solution that we described in Sec. V. This second-order tran-
sition is of a peculiar nature, as it possesses critical expo-
nents typically associated with first-order phase transitions.
Consequently, numerical studies must be performed with
care as finite-size effects can make this phase transition in-
distinguishable from a first-order transition.

We have found that in the vicinity of the transition the
singular component of the free energy is Fsing
 t

ln t where t
=�−�c. The logarithmic correction is sufficient to make the
first derivative dF /d� continuous; therefore, there is no as-
sociated “latent heat.” Ordinarily, finite “latent heat” must be
a continuous function of thermodynamic variables, which
ensures that the phase transition persists for finite �, at least
up to the critical point. Conversely, when it is zero, it is
plausible that the phase transition might disappear for arbi-
trarily small � as we claim.

FIG. 18. Transverse field � vs the width of the transition ��. A
log-log scale is used to obtain a power-law fit between the width of
the transition and the transverse field �= ����z. Solid triangles cor-
respond to numerical estimates of �� for the following values of �:
0.001, 0.002, 0.005, 0.01, 0.02, 0.05, and 0.1. The slope of the gray
solid line corresponds to z=1.
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Throughout the paper we have attempted to keep the dis-
cussion as general as possible. All formulas derived using the
replica method can be applied to a host of spin-glass models
defined on random hypergraphs. In the analysis presented in
the paper it will usually involve the replacement of the cost
function EJ�s1 , . . . ,sK� by a suitable expression and perform-
ing disorder averages �¯	J appropriately. Quantum analogs
of dilute p-spin �55�, K-NAE-SAT �59�, the exact cover
�30,60,61�, and the vertex cover �62� problems can be stud-
ied using this method.

We have also devised a new method, of quasi–Monte
Carlo variety, for the numerical determination of the func-
tional order parameter. Since it significantly outperforms
standard the Monte Carlo method, it can be used to improve
the accuracy in the numerical studies of one-step replica
symmetry breaking, which so far required significant nu-
merical effort �63�.

For future work it is of interest to investigate the stability
region of the replica-symmetric solution on the plane �� ,��
in a quantum regime corresponding to finite values of �. In
the classical case �=0, the replica-symmetric solution loses
the stability at the point of the dynamic �replica symmetry
breaking� transition �=�d. Beyond this point the energy
landscape is characterized by a proliferation of an exponen-
tially large �in N� number of deep local minima in the energy
landscape, which traps classical annealing algorithms. It is of
interest to explore how this picture is modified for finite
values of �. The structure of the free-energy landscape will
have implications for the scaling of the minimum gap in the
QAA.

The effective classical Hamiltonian �44� may be used as a
starting point for performing RSB analysis. Although it re-
flects the static approximation, the disorder dependence is
explicit. The replica-symmetric ansatz that we made corre-
sponds to the assumption that the distributions of magnetiza-
tions on different sites are not correlated. In the limit of small
� relevant local minima correspond to integer values of mag-
netizations: m� �1 and m�0. Although local minima with
intermediate values of m exist, our analysis indicates that
corresponding free energies correspond to excitations with
energies much larger than the typical O���. In this limit,
continuous magnetizations may be replaced by discrete vari-
ables taking three possible values. The third possibility �m
=0� makes the problem distinctly different from the classical
K-SAT.
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APPENDIX: QUASI–MONTE CARLO IMPLEMENTATION

The quasi–Monte Carlo �QMC� method of evaluating in-
tegrals replaces the random sequences of standard MC algo-
rithms with deterministic minimum discrepancy sequences

�64�. For example, a two-dimensional integral of a function
f�x ,y� on �0;1�2 is approximated by

�
�0;1�2

dx dyf�x,y� �
1

N − 1 �
k=1

N−1

f� ik

N
,
jk

N
� , �A1�

where �ik , jkk=1
N−1 is the minimum discrepancy sequence �since

it is a finite, we will call it a minimum discrepancy set�. We
use Sobol sequences �65� and choose N to be an integer
power of 2 for best results. The error estimate for the two-
dimensional integral �A1� is O�log N /N� for continuous
functions f�x ,y� and O�1 /N2/3� for discontinuous functions
f�x ,y�. This compares favorably to the expected error of
O�1 /N1/2� in the standard Monte Carlo method.

We adapt the QMC method to integrals involving univari-
ate probability distributions. The probability distributions
will be represented internally as a finite-size sample. In con-
trast to the standard MC method, we will ensure that these
samples are as uniform as possible. With each univariate
distribution p�x� we associate a function X�p� defined on the
interval �0;1� and satisfying the condition

X��
−�

x

dx�p�x��� = x . �A2�

Internally, it will be represented by a set of �Xkk=1
N−1, where

Xk=X�k /N�.
For an arbitrary function ��x�, its expectation value may

be approximated by

� dx p�x���x� =
1

N − 1 � ��Xi� . �A3�

The flow of the computation shall consist of a sequence of
transformations of probability distributions. The elementary
operation is finding the distribution of a variable z= f�x ,y�,
given distributions of variables x and y:

p�z� =� dx dyp�x�p�y�„z − f�x,y�… . �A4�

That is, we need to find a uniform sample �Zk of a distribu-
tion p�z� from uniform samples �Xk and �Yk of distributions
p�x� and p�y�. What the appropriate sample should be can be
assessed indirectly by considering the expectation value of
an arbitrary function ��z�:

1

N − 1 �
k=1

N−1

��Zk� =� dz p�z���z� =� dx dy p�x�p�y��„f�x,y�…

= �
�0;1�2

dp1dp2��f„X�p1�,Y�p2�…� . �A5�

Using �A1� to estimate the integral over �0;1�2 in �A5�, we
may write

1

N − 1�
k

��Zk� =
1

N − 1�
k

�„f�Xik
,Y jk

�… , �A6�

where �ik , jkk=1
N−1 is the Sobol set. The choice of the sample

�Zk satisfying �A6� for any ��z� is unique. Algorithmically,
it is computed as follows:
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�i� For k=1, . . . ,N−1, evaluate Zk= f�Xik
,Y jk

�, where
�ik , jkk=1

N−1 is the Sobol set.
�ii� Sort the resulting vector �Zkk=1

N−1 in increasing order.
The last step is to ensure that Zk�Zk+1, which is required

by definition �A2�.

1. Application to T=0 classical 3-SAT

Let us briefly describe how this idea can be applied to
solving self-consistency equations. For K=3, the equation
for Q�u� already has the form of �A4�,

Q�u� =� dh2dh3P�h2�P�h3�

� �u + J1 min„1,�J2h2�+,�J3h3�+…� , �A7�

enabling one to compute �uk from �hk. The equation for
P�h� may be written as follows:

P�h� = �
d=0

�

fd�3��Pd�h� , �A8a�

Pd�h� =� �duk�
k=1

d

Q�uk��h − �
k

uk� . �A8b�

A set of �Pd�h� is computed using the following recursive
definition having the desired form of �A4�:

Pd�h� =� dh�duPd−1�h��Q�u��h − h� − u� , �A9�

together with the condition P0�h�=�h�. The distribution
P0�h� is represented by a vector of N−1 zeros. Computing a
sample of P�h� from a set of samples of Pd�h� via �A8a�
means that we have to select N−1 values from the larger set
of �dmax+1�� �N−1� values that represent distributions
P0�h� through Pdmax

�h�.
The elegant way to accomplish it is the following. We

formally introduce the function H�t , p� defined on �0;1�2.
For any fixed value of t, viewed as a function of one argu-
ment p, H�t , p� represents the distribution Pd�t��h�:

H��
−�

h

dh�Pd�t��h��� = p �A10�

and d�t� is a stepwise function of t such that

�
k=0

d�t�

fk�3�� � t � �
k=0

d�t�+1

fk�3�� . �A11�

The expectation value of an arbitrary function ��h� can be
written as

� dh P�h���h� = �
�0;1�2

dt dp �„H�t,p�… . �A12�

Applying �A1� to the integral, we construct the sample for
P�h� from �hjk

(d�ik�), where �hk
�d� represents the sample for

Pd�h�.

Memory requirements for each iteration step can be kept
at O�N�, whereas the time complexity is O�N log2 N�, which
is the product of dmax=O�log N� and the O�N log N� com-
plexity of sorting.

The procedure described above is trivially extended to
K	4 and to finite temperatures T
0. The extension to finite
temperatures merely changes the form of uJ�h2 , . . . ,hK�. The
distribution Q�u� may be computed using either a single �K
−1�-dimensional integral or as a sequence of K−2 two-
dimensional integrals. The latter approach is possible be-
cause for any K	4, the function uJ�h2 , . . . ,hK� may be writ-
ten in terms of compositions of functions of two variables.

Instead of iterating the self-consistency equations for a
fixed value of �, we achieve accelerated convergence by
specifying the desired width � of the distribution P�h� and
adjusting the value of � at each iteration step to satisfy this
constraint. As a result, we observe exponentially fast conver-
gence and avoid the effects of the critical slowing down in
the vicinity of the phase transition.

2. Application to quantum K-SAT

The case of quantum K-SAT in the limit ��1 is slightly
more involved. The order parameter is the joint probability

distribution �JPD� P�h , h̄�. For quantum Model B, it is pos-
sible to parameterize this JPD by a univariate distribution
P+�h� and apply the method described previously. For quan-
tum Model AB, however, no such parametrization is pos-
sible.

One possible solution is to work with univariate distribu-
tions Q�u� and R��� exclusively. It is straightforward to com-
pute Q�u� from R��� by evaluating the �K−1�-dimensional
integral �61a�–�61c�, which can be further reduced to the
sequence of two-dimensional integrals for K	4. The non-
trivial part is the computation R��� from Q�u�, which we
describe below.

It is easy to see that Q�u� is symmetric �i.e., Q�u�
=Q�−u�� and that �u��1. Let  1/2 denote the probability that
�u�
1 /2:

 1/2 = �
�u�
1/2

du Q�u� . �A13�

We introduce the reduced distributions Q̂��u� and Q̂
�u� de-
fined on intervals �0;1 /2� and �−1;−1 /2�, respectively:

Q̂��u� =
2

1 −  1/2
Q�u�!�u�!�1

2
− u� , �A14a�

Q̂
�u� =
2

 1/2
Q�u�!�− u�!�−

1

2
− u� , �A14b�

Where

!�x� = �1 for x 
 0,

0 for x � 0
�

is the Heaviside function. The factors 2 / �1− 1/2� and 2 / 1/2

ensure that Q̂��u� and Q̂
�u� are normalized to unity.
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We also define

P̂0�h� = �
d=0

�

fd�K�

2
�1 −  1/2��

�� �duk�
k=1

d

Q̂��uk��h − �
k

uk� , �A15�

as well as the sequence �P̂k�h�: the sequence of successive

convolutions of P̂0�h� with Q̂
�u�. It is computed via the
recurrence relation

P̂k�h� =� du Q̂
�u�P̂k−1�h − u� . �A16�

The distribution P̂k�h� gives the contribution from vertices
that have an arbitrary number of incident hyperedges with
u� �0;1 /2� and precisely k hyperedges with u� �−1;−1 /2�.
In view of a relation �55� between ū and u, to each h in the

distribution P̂k�h� there corresponds h̄=k+h.
Including contributions from mirror image regions

u� �−1 /2;0� and u� �1 /2;1�, the distribution P�h , h̄� may

be written in terms of �P̂k�h�:

P�h, h̄� = �
k+,k−	0

fk+
�K�

2
 1/2� fk−

�K�

2
 1/2�

�� dh+dh−P̂k+
�h+�P̂k−

�h−�

��h − h+ + h−��h̄ − k+ − k− − h+ − h−� ,

�A17�

where fk��� denotes the Poisson distribution with mean � as
usual. It follows that the distribution R��� given by Eq. �87�
may be written in the following general form:

R��� =� dt+dt−dh+dh−P̂k�t+��h+�P̂k�t−��h−�

�„� − fk�t+�,k�t−��h+,h−�… , �A18�

where fk+,k−
�h+ ,h−�=��h+−h− ,�−k+−k−−h+−h−� and we

have defined a stepwise function k�t� chosen to satisfy

�
r=0

k�t�

f��K�

2
 1/2�� t � �

r=0

k�t�+1

f��K�

2
 1/2� . �A19�

Once R��� has been expressed as a four-dimensional inte-
gral, the values ��kk=1

N−1 may be sampled using Sobol sets.
Memory and time requirements of this procedure remain
O�N� and O�N log2 N�, respectively.
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